^

E-Waste

Improving Recycling Efficiency of Portable Electronics by Automating Battery Disassembly

Improving Recycling Efficiency of Portable Electronics by Automating Battery Disassembly

This project proposes to develop an automated and integrated battery disassembly process for EOL PCEs using a modular approach, as well as design and develop a component disassembly and battery removal process using a combination of mechanical (e.g., robotic disassembly, water-jet cutting), chemical, and thermal approaches to increase EOL PCE materials recover and processes throughputs

Upon completion, this project will design a prototype system, built and operated to confirm system effectiveness. This project will increase secondary materials by 0.03 million metric tons (MMT) of e-waste, 3.6 PJ energy reduction, 0.180MMTCO2e. Assumptions based on recovery of 20% of 150,000 metric tons per year of PCE discarded.

Project Team:
Idaho National Laboratory (INL), Sunnking, University at Buffalo (UB), Iowa State University (ISU)

21-01-RM-5083

Modeling reverse flows of selected recycled materials, their associated energy use and their GHG emissions

Modeling reverse flows of selected recycled materials, their associated energy use and their GHG emissions: An application to California and a blueprint for the US

The objective of this project is to create a unique systems analysis tool for REMADE, the recycling industry, and U.S. consumers of recycled materials (using the California State Freight Forecasting Model (CSFFM) in the California Statewide Freight Forecasting and Travel Demand Model (CSF2TDM) as a framework) that will enable REMADE, recycling agencies, and industry to analyze and project the generation, flow, recycling, reuse, and disposal of scrap metal, e-waste, selected plastics, and fibers from packaging, and their associated net energy consumption and net greenhouse gas (GHG) emissions, under different scenarios.  The tool will be developed using California as a case study; detailed step-by-step instructions to enable the extension of this tool to other states and the U.S. will be developed.​ 

Project Team:
University of California-Irvine (UCI), TruckPay.com

21-01-SA-5104

Fast Diagnostics to Enable EV Battery Reuse

Fast Diagnostics to Enable EV Battery Reuse

This project aims to develop a portable test technology to verify SOH of used EV batteries, in the field to enable re-use of battery packs as opposed to materials recycling. Upon completion, this project will deliver a portable sensor technology for lower-cost in-field testing of used electric vehicle (EV) battery health and usability for second-life battery (2LB) applications. Additionally, this project will deliver faster portable battery diagnostics that can increase test throughput by 3x, reduce overall shipping and warehousing requirements by 30%, and reduce overall repurposing costs by 36%, and repurposing 1MWh of batteries reduces emissions by 73 MT CO2E by offsetting new battery manufacturing. 

Project Team:
ReJoule, Renewance

21-01-RM-5019

Automation for Remanufacturing of Battery Modules

Automation for Remanufacturing of Battery Modules

This project seeks to develop an automation process, enabled by a computer vision system and robotic arms for facilitating routine disassembly and human-in-the-loop, to enable a more flexible, safer, and more efficient LIB disassembly process. Upon completion, this project will deliver the capability to identify damaged and severely degraded modules using electrical test and thermal imaging, a process for high-value assessment of the entire battery pack using electrical tests, and elements for automation of the pack disassembly such as robotic removal of battery pack fasteners. This project will increase recovery of secondary feedstock by 0.198 MMT, save 33PJ of embodied energy, reduce GHG by 2.12 MMT of CO2, based on a doubling of the current reman rate for current EV production of 3.1 million cars.

Project Team:
Rochester Institute of Technology (RIT), BigBattery

21-01-RM-5039

Identification of Mixed Plastics and Valuable Electronics at the Source

Identification of Mixed Plastics and Valuable Electronics at the Source

This project seeks to develop vision sensing software that will enable consumers to determine how materials should be sorted for recycling, based on local recycling requirements.

Project Team:
University of Miami, Lid Vizion, LLC

20-01-RR-4042

Chemical Recycling of Mixed Plastics and Valuable Metals in the Electronic Waste Using Solvent-Based Processing

Chemical Recycling of Mixed Plastics and Valuable Metals in the Electronic Waste Using Solvent-Based Processing

This project seeks to demonstrate the potential of solvent-based extraction process to recover plastics mixed metals and plastics electronic waste (e‐waste) for cross-industry reuse. Following extraction of the plastics, the mixed-stream would be primarily metals. The plastics would be recovered from the process solvent using an anti-solvent. If successful, this project will significantly increase the recycling rates of e-waste, and the recovery of plastics and metals from this source material. The potential energy savings and emission reduction from this project are estimated at 16PJ per year and 334,000 MT of CO2eq. per year.

Project Team:
University of Massachusetts-Lowell, Sunnking, Inc., Institute of Scrap Recycling

18-02-RR-17

Development and Validation of Metal Separation Technology for Complex Metal Systems

Development and Validation of Metal Separation Technology for Complex Metal Systems

The goal of the proposed work is to develop, design, and demonstrate novel bench scale processes for efficient, low-cost, and environmentally benign elemental separation from low concentration solutions obtained from leaching of electronic waste (e-waste) processing streams. These are key processes for the recovery of valuable materials from e-waste and will provide a pathway to profitable recycling processes for high-value metals. Separation of multiple elements from complex metal-bearing waste streams (with low concentration) through traditional metal separation processes, such as solvent extraction (SX), ion exchange (IX), and precipitation, is economically and environmentally challenging. The objective of this proposal is to evaluate two innovative processes/technology, viz., electrosterically stabilized nanocrystalline cellulose (ENCC), and Continuous Ion Exchange and Ion Chromatography (CIX-CIC) with modified zeolite and polymers, for the separation of Al, Cu, Au, Ag, and Pd from e-waste streams (i.e., printed wiring boards).

Project Team:
The Pennsylvania State University, CHZ Technologies LLC

19-01-RR-12

Low-Cost, High-Value Metal Recovery from Electronic Waste to Increase Recycling and Reduce Environmental Impact

Low-Cost, High-Value Metal Recovery from Electronic Waste to Increase Recycling and Reduce Environmental Impact

This project seeks to adapt relatively low-cost and low-energy leaching technologies to directly recover copper and precious metals from e-waste.  This approach will enable the recovery of these metals from the mixed metals and plastics streams from e-waste and also enable recovery of the plastics. This technology could replace energy-intensive pyrometallurgical processes such as high-temperature smelting that might otherwise be used to recover metals, but due to the high-temperature the plastics are consumed. 

Utilizing these less energy-intensive and lower-cost technologies will provide the economic incentive to dramatically increase e-waste recycling by as much as 20%. The potential energy and emissions reduction are estimated at 21PJ per year and 1.2 million MT of CO2eq per year.

Project Team:
University of Utah, Sunnking, Inc.

18-02-RR-06

Epoxy/Silicon Potting Material Removal for Greater Recovery of Circuit Boards

Epoxy/Silicon Potting Material Removal for Greater Recovery of Circuit Boards

More cost-effective technologies are needed to remove coating or potting materials from circuit boards to enable repair and reuse. Two alternative technologies, laser ablation and micro-media blasting, will be tested and evaluated to quantify cost-effectiveness relative to industry specified cost targets.

Project Team:
Rochester Institute of Technology, Caterpillar Inc., CoreCentric Solutions

18-01-RM-13

Low-Concentration Metal Recovery from Complex Streams Using Gas-Assisted Microflow Solvent Extraction (GAME)

Low-Concentration Metal Recovery from Complex Streams Using Gas-Assisted Microflow Solvent Extraction (GAME)

The objective of this project is to develop GAME for efficient and cost- effective extraction and purification of low-concentration, high-value metals from complex streams. The successful development of this technology will contribute to the production of high- purity precious metals from end-of-life PCBs of various sources. GAME uses three phases (aqueous, organic, and gas) to achieve an efficient separation in a confined microchannel.

Project Team:
Virginia Polytechnic Institute and State University, Phinix, LLC

19-01-RR-03

Condition Assessment of Used Electronics

Condition Assessment of Used Electronics

Detecting solder joint and interconnection failures on used electronics presents a serious cost challenge for remanufacturers because detection is currently completed manually. Several automated methods for detection of these failures will be examined to determine their feasibility for use in the remanufacturing industry.

Project Team:
Rochester Institute of Technology, Caterpillar Inc., CoreCentric Solutions

18-01-RM-14

Evaluation of Logistics Systems for the Collection, Preprocessing and Production of Secondary Feedstocks from E-waste

Evaluation of Logistics Systems for the Collection, Preprocessing and Production of Secondary Feedstocks from E-waste

The objective of this project is to develop an e-waste logistics model that integrates transportation, manufacturing processes, and markets to enable optimal recovery and recycling of e-waste. The model will enable identification of least cost options for increasing e-waste collection and recycling.

Project Team:
Idaho National Laboratory, Sunnking, Inc.

18-01-RR-18

Quantification of Financial and Environmental Benefits Tradeoffs in Multi-Generational Product Family Development Considering Re-X Performances

Quantification of Financial and Environmental Benefits Tradeoffs in Multi-Generational Product Family Development Considering Re-X Performances

The objectives are to develop fundamental models and new design tools with capabilities of generating and comparing design for Re-X alternatives considering economic profitability and environmental impact savings. The specifics of the research objectives are to (1) identify design for reliability processes factors that are interdependent with Re-X options, thus establish models for the interdependencies, (2) integrate these interdependence models with existing reliability analysis tools so that new analysis tools could take into account Re-X options in design for reliability, (3) create a decision support system for the optimization of product family design considering reliability and Re-X options concurrently, and (4) take into account the uncertainties resulted from post design activities so that robust design tradeoff decisions can be made.

Project Team:
University of Illinois at Urbana-Champaign, Iowa State University, Deere and Company, Green Electronics Council

19-01-DE-01

Mapping the Material Base for REMADE

Mapping the Material Base for REMADE

This project will develop a materials flow baseline for REMADE materials (metals, fibers, polymers, and e-waste) to support measurement of the impact of future technology improvements through REMADE projects. A harmonized and validated set of data for metals, fibers, polymers and e-waste will be developed within a consistent framework that allows comparisons of material efficiencies across REMADE materials at all life-cycle stages.

Project Team:
Yale University, Unilever, International Zinc Association, Massachusetts Institute of Technology

18-01-SA-05

Design for Remanufacturing

Design for Remanufacturing

This project is focused on working directly with remanufacturing industry leaders to create a set of pragmatic “design for remanufacturing” rules that would allow design engineers to integrate remanufacturing considerations in their component and part designs and pave the way for integration of these design rules across various engineering tools and CAD platforms currently in use to enable improvement in component and part manufacturability.

These design rules will be verified on existing parts and CAD file(s) provided by the industrial partner to identify potential changes to improve the part manufacturability.  Integration of manufacturability into the design paradigm is expected to enable an increase in remanufacturing contributing to an annual energy saving of about 50 PJ and an annual emission reduction of 3.6 million MT of CO2-eq.  

Project Team:
Rochester Institute of Technology, Caterpillar Inc., Remanufacturing Industries Council

18-02-DE-04

Development of an Industrially Relevant RE-SOLAR Design Framework

Development of an Industrially Relevant RE-SOLAR Design Framework

Solar modules are creating a major surge in e-waste because inadequate attention is focused on designing for recycling or reuse. This project provides a design framework of high-efficiency modules that can be economically recycled, recovered, remanufactured, and/or reused.

Project Team:
University of Pittsburgh, University of California-Irvine, National Renewable Energy Laboratory, First Solar

18-01-DE-07