^

ISU

Improving Recycling Efficiency of Portable Electronics by Automating Battery Disassembly

Improving Recycling Efficiency of Portable Electronics by Automating Battery Disassembly

This project proposes to develop an automated and integrated battery disassembly process for EOL PCEs using a modular approach, as well as design and develop a component disassembly and battery removal process using a combination of mechanical (e.g., robotic disassembly, water-jet cutting), chemical, and thermal approaches to increase EOL PCE materials recover and processes throughputs

Upon completion, this project will design a prototype system, built and operated to confirm system effectiveness. This project will increase secondary materials by 0.03 million metric tons (MMT) of e-waste, 3.6 PJ energy reduction, 0.180MMTCO2e. Assumptions based on recovery of 20% of 150,000 metric tons per year of PCE discarded.

Project Team:
Idaho National Laboratory (INL), Sunnking, University at Buffalo (UB), Iowa State University (ISU)

21-01-RM-5083

Hybrid Laser Processing for Metallic Surface Remanufacturing

Hybrid Laser Processing for Metallic Surface Remanufacturing

The goal of this project is to develop a novel remanufacturing strategy using hybrid laser surface processing for effective removal of corrosion and coatings and fast repair of metallic surfaces. In specific, laser surface ablation will be used to remove coating/corrosion, while laser surface remelting will be applied to repair surface defects (cracks and wear damages) to restore the surface integrity. The outcomes of this research will yield a prototype robot-integrated hybrid laser system that can be used for surface remanufacturing of components with complex geometry. This project's energy savings are estimated at 16.5MJ/kg of reman product. 

Project Team:
Iowa State University (ISU), University of Nevada, Reno, Volvo

21-01-RM-5086

Development of Hybrid Repair and Nondestructive Evaluation Technologies for Aerospace Components

Development of Hybrid Repair and Nondestructive Evaluation Technologies for Aerospace Components

The objective of this project is to develop an integrated hybrid DED/insitu multi-modal data acquisition and NDE modeling of DED repairs for aerospace materials (i.e. medium carbon low alloy steel and a nickel-based superalloy) to increase the successful repair and reuse of these materials. This proposed project is a continuation exploratory project 18-01-RM-09.  

The final product will be a complete software package that can automatically perform multi-modal (surface topography and thermal imaging) in-situ data acquisition (residual stresses) and nondestructive evaluation (NDE) analysis for industry users without expertise in 3D scanning, thermal imaging, and XRD. This project will create embodied energy savings of 1.56PJ and GHG emissions reduction of 0.0915MMT of CO2, based on an increase in successful repair of 0.021MMT of aerospace parts such as turbine shafts.

Project Team:
Rochester Institute of Technology (RIT), Iowa State University (ISU), The Ohio State University (OSU), Simufact, Hybrid Manufacturing Tech, Proto Mfg. Inc., Pratt & Whitney

21-01-RM-5062