^

Caterpillar

Development of a Novel Design for Remanufacturing Software Plugin for CAD

Development of a Novel Design for Remanufacturing Software Plugin for CAD

This project is a continuation of exploratory project 18-02-DE-04. The goal of this project seeks to develop a practical, implementable software tool that enables DfRem considerations in the product design process and is seamlessly integrated with existing CAD software packages commonly used in industry. Upon completion, this projects deliverables include an integrated software tool with RIE and DRC modules and CAD plugins for Autodesk and Creo. This project will increase in secondary material use by 0.280MMT, energy savings of 23.7 PJ, and emissions reduction of 1.48 MMT, based on preliminary data from project 18-02-DE-0.

Project Team:
Rochester Institute of Technology (RIT), Caterpillar, Inc. BorgWarner (Delphi), Trane Technologies, ZF Group (WABCO), Remanufacturing Industries Council (RIC), Autodesk

21-01-DE-5044

High Speed Laser Cladding Repair Process Development

High Speed Laser Cladding Repair Process Development

This project seeks to expand upon the exploratory project, 18-02-RM-03 results to more fully vet the capabilities of HSLC and investigate additional additive repair applications that are challenging due to strength requirements, distortion requirements, and wear requirement. Limitations to the performance of the developed HSLC system will also be addressed, including design of a nozzle with HSLC in mind that incorporates additional cooling and improved powder focus. The technology solution that will be delivered at the end of the project is HSLC material system repair techniques, including a new powder nozzle design, and a general process guide to describe application of the repair methods. This project will reduce primary feedstock by 0.014 million metric tons (MMT) steel, 13.8 PJ energy reduction, 0.8 MMTCO2e. Assumptions based on preliminary results of 18-02-RM-03. 

Project Team:
Rochester Institute of Technology (RIT), Caterpillar Inc., Synergy Additive Manufacturing

21-01-RM-5027

Remanufacturing of Surface-Hardened Steel Components by Ultrasonic Surface Modification

Remanufacturing of Surface-Hardened Steel Components by Ultrasonic Surface Modification

This project seeks to develop practical repair techniques to recover nominal ‘as-new’ fatigue life in used or worn surface-hardened steel components by i) forging closed preexisting microcracks, ii) introducing beneficial compressive residual stresses (CRS) deeper than conventional shot peening, and iii) generating a nanocrystalline microstructure at the surface. Surface repairs based on UIT (a form of high-frequency needle peening) will be developed for a range of usage-induced damage conditions that are commonly found in these components, but for which there is a lack of practical repair methods.

Project Team:
Rochester Institute of Technology (RIT), Caterpillar, Inc., University of Pittsburgh (PITT)

20-01-RM-4012

High Speed Laser Cladding for Hard Surface Replacement

High Speed Laser Cladding for Hard Surface Replacement

This project lays out a novel technique - high speed laser cladding - for remanufacturing high-strength components such as crankshafts and camshafts. While cladding is a proven technique for applying wear-resistant metal coatings In manufacturing, high-speed laser cladding increases productivity and significantly reduce the cost of applying the layers That will enable use of this technology in remanufacturing.

The new approach to cladding will result in increasing the reuse rate in engine remanufacturing from 70% to 95%, reducing annual embodied energy and emissions by 1.3 PJ and 44,000 metric tons, respectively.

Project Team:
Rochester Institute of Technology, Caterpillar Inc., Synergy Additive Manufacturing

18-02-RM-03

Non-Destructive In-process Assessment of Thermal Spray Repairs

Non-Destructive In-process Assessment of Thermal Spray Repairs

Thermal spray process inspection is currently lot-based which can result in the rejection of entire lots of parts due to process variation. This project will focus on development of non-destructive in-process evaluation of thermal spray to minimize reject rates of good parts.

Project Team:
Rochester Institute of Technology, University of Pittsburgh, Caterpillar Inc.

18-01-RM-11

Epoxy/Silicon Potting Material Removal for Greater Recovery of Circuit Boards

Epoxy/Silicon Potting Material Removal for Greater Recovery of Circuit Boards

More cost-effective technologies are needed to remove coating or potting materials from circuit boards to enable repair and reuse. Two alternative technologies, laser ablation and micro-media blasting, will be tested and evaluated to quantify cost-effectiveness relative to industry specified cost targets.

Project Team:
Rochester Institute of Technology, Caterpillar Inc., CoreCentric Solutions

18-01-RM-13

Remaining Life Determination

Remaining Life Determination

Non-destructive methods to measure accumulated mechanical damage (i.e., fatigue) prior to failure do not exist. Research will focus on methods to reliably detect features associated with early stage fatigue damage to predict the remaining useful life of the part.

Project Team:
Rochester Institute of Technology, University of Illinois at Urbana-Champaign, Caterpillar Inc.

18-01-RM-10

Condition Assessment of Used Electronics

Condition Assessment of Used Electronics

Detecting solder joint and interconnection failures on used electronics presents a serious cost challenge for remanufacturers because detection is currently completed manually. Several automated methods for detection of these failures will be examined to determine their feasibility for use in the remanufacturing industry.

Project Team:
Rochester Institute of Technology, Caterpillar Inc., CoreCentric Solutions

18-01-RM-14

Design for Remanufacturing

Design for Remanufacturing

This project is focused on working directly with remanufacturing industry leaders to create a set of pragmatic “design for remanufacturing” rules that would allow design engineers to integrate remanufacturing considerations in their component and part designs and pave the way for integration of these design rules across various engineering tools and CAD platforms currently in use to enable improvement in component and part manufacturability.

These design rules will be verified on existing parts and CAD file(s) provided by the industrial partner to identify potential changes to improve the part manufacturability.  Integration of manufacturability into the design paradigm is expected to enable an increase in remanufacturing contributing to an annual energy saving of about 50 PJ and an annual emission reduction of 3.6 million MT of CO2-eq.  

Project Team:
Rochester Institute of Technology, Caterpillar Inc., Remanufacturing Industries Council

18-02-DE-04