^

DE

Design for RE-Solar

Design for RE-Solar

This traditional research and development REMADE proposal is to create a framework that addresses the knowledge gaps of RE-SOLAR design. The proposed framework will offer impact projections for future PV panel waste streams (globally and for the US) based on predictions of global PV growth, provide LCA of various PV designs, and demonstrate new concepts and innovation for the design of an industrial scale PV recycling plant. The proposal is a continuation of Project 18-01-DE-07.

Upon completion, this project will deliver PV in a circular economy (PV ICE) version 1.0.0 software tool with the capability to analyze embodied energy and equivalent carbon dioxide emissions given changes in Si PV technologies, new PV technologies such as tandem cells and perovskites, and effects of changing raw material sourcing or increasing recycled material in manufacturing; The tool will also be used to analyze reduced material consumption and the effect of open-loop versus closed-loop recycling on future CO2 emissions, energy, waste streams, and material economic value. This project will reduce primary feedstock by 1.08 million metric tons (MMT), 26.6 PJ energy reduction, 1.34 MMCO2e. Assumptions based on preliminary results of the exploratory project.

Project Team:
University of Pittsburgh, University of California-Irvine (UCI), National Renewable Energy Laboratory (NREL), First Solar, Alfred University, Yale University, Sunnking, Inc., Aluminum Association, Electronic Recyclers International (ERI)

21-01-DE-5028

Development of a Novel Design for Remanufacturing Software Plugin for CAD

Development of a Novel Design for Remanufacturing Software Plugin for CAD

This project is a continuation of exploratory project 18-02-DE-04. The goal of this project seeks to develop a practical, implementable software tool that enables DfRem considerations in the product design process and is seamlessly integrated with existing CAD software packages commonly used in industry. Upon completion, this projects deliverables include an integrated software tool with RIE and DRC modules and CAD plugins for Autodesk and Creo. This project will increase in secondary material use by 0.280MMT, energy savings of 23.7 PJ, and emissions reduction of 1.48 MMT, based on preliminary data from project 18-02-DE-0.

Project Team:
Rochester Institute of Technology (RIT), Caterpillar, Inc. BorgWarner (Delphi), Trane Technologies, ZF Group (WABCO), Remanufacturing Industries Council (RIC), Autodesk

21-01-DE-5044

Data-Driven Design Decision Support for Remanufacturing of High-Value Components in Industrial and Agricultural Equipment

Data-Driven Design Decision Support for Remanufacturing of High-Value Components in Industrial and Agricultural Equipment

This project aims to develop and validate a new tool package (D4Reman) for design decision analysis to improve the reuse rates of high-value components at end-of-life. The project is a continuation of exploratory project 18-02-DE-06. Upon completion, this project will create a software tool package (D4Reman) for data-driven design decision support consisting of a cloud-based software application along with an Excel plugin. It will utilize field reliability data and reman reuse data to identify design improvement decisions and quantitatively assess their influences on the initial cost, life-cycle warranty cost (LCWC), and energy and emissions. This project will reduce primary feedstock by 0.55 million metric tons (MMT) of steel and aluminum, 7 PJ energy reduction, 0.42 MMCO2e. Assumptions based on preliminary results of exploratory project.

Project Team:
Iowa State University (ISU), University of Illinois at Urbana-Champaign (UIUC), Mississippi State University, John Deere, Automotive Parts Remanufacturers Association (APRA)

21-01-DE-5071

Material and Vehicle Design for High-Value Recycling of Aluminum and Steel Automotive Sheet

Material and Vehicle Design for High-Value Recycling of Aluminum and Steel Automotive Sheet

This project seeks to increase automotive sheet metal EOL (post‐consumer) recycled content; thus, reducing vehicle embodied energy and primary feedstock consumption. The objectives are to produce a new analytical design for recycling tool tailored for automotive metal sheets, and to generate new knowledge on how EOL sheet recycling is affected by vehicle design (e.g., alloy specification), recycling system infrastructure (e.g., deployment of emerging separation processes), and sheet manufacturing process decisions (e.g., temperature profiles informed by new Integrated Computational Materials Engineering (ICME) tools).

Project Team:
University of Michigan, Ford Motor Company, Novelis, Argonne National Laboratory (ANL), The Institute of Scrap Recycling Industries (ISRI), The Aluminum Association, Light Metal Consultants

20-01-DE-4030

Building Re-X (BREX): Data, Methodology, and Design Integration

Building Re-X (BREX): Data, Methodology, and Design Integration

This project seeks to bring the concept of Design for Building Re-X (BREX) to the building construction materials. The project will develop a set of open access EOL databases for construction materials and create open-access BREX process models to enable EOL constraints to be incorporated into building design and materials selection.

Project Team:
National Renewable Energy Laboratory (NREL), Building Transparency, Skidmore Owings & Merrill

20-01-DE-4108

Analysis and Design for Sustainable Circularity of Barrier Film in Sheet Molding Composites

Analysis and Design for Sustainable Circularity of Barrier Film in Sheet Molding Composites

This project seeks to develop 1) data and models about alternatives for recycling, reusing, or replacing the current nylon-based SMC barrier film, and 2) an approach, database, and software for the design of sustainable and circular networks of this barrier film.

Project Team:
The Ohio State University (OSU), Kohler Co., National Renewable Energy Laboratory (NREL), Arizona State University (ASU)

20-01-DE-4103

Quantification of Financial and Environmental Benefits Tradeoffs in Multi-Generational Product Family Development Considering Re-X Performances

Quantification of Financial and Environmental Benefits Tradeoffs in Multi-Generational Product Family Development Considering Re-X Performances

The objectives are to develop fundamental models and new design tools with capabilities of generating and comparing design for Re-X alternatives considering economic profitability and environmental impact savings. The specifics of the research objectives are to (1) identify design for reliability processes factors that are interdependent with Re-X options, thus establish models for the interdependencies, (2) integrate these interdependence models with existing reliability analysis tools so that new analysis tools could take into account Re-X options in design for reliability, (3) create a decision support system for the optimization of product family design considering reliability and Re-X options concurrently, and (4) take into account the uncertainties resulted from post design activities so that robust design tradeoff decisions can be made.

Project Team:
University of Illinois at Urbana-Champaign, Iowa State University, Deere and Company, Green Electronics Council

19-01-DE-01

Design for Remanufacturing

Design for Remanufacturing

This project is focused on working directly with remanufacturing industry leaders to create a set of pragmatic “design for remanufacturing” rules that would allow design engineers to integrate remanufacturing considerations in their component and part designs and pave the way for integration of these design rules across various engineering tools and CAD platforms currently in use to enable improvement in component and part manufacturability.

These design rules will be verified on existing parts and CAD file(s) provided by the industrial partner to identify potential changes to improve the part manufacturability.  Integration of manufacturability into the design paradigm is expected to enable an increase in remanufacturing contributing to an annual energy saving of about 50 PJ and an annual emission reduction of 3.6 million MT of CO2-eq.  

Project Team:
Rochester Institute of Technology, Caterpillar Inc., Remanufacturing Industries Council

18-02-DE-04

Development of an Industrially Relevant RE-SOLAR Design Framework

Development of an Industrially Relevant RE-SOLAR Design Framework

Solar modules are creating a major surge in e-waste because inadequate attention is focused on designing for recycling or reuse. This project provides a design framework of high-efficiency modules that can be economically recycled, recovered, remanufactured, and/or reused.

Project Team:
University of Pittsburgh, University of California-Irvine, National Renewable Energy Laboratory, First Solar

18-01-DE-07

Design Iteration Tool to Sustain Remanufacturability

Design Iteration Tool to Sustain Remanufacturability

The overall goal of this project is the development and application of a software plug-in to enable the design of components that will satisfy both EPA standards-driven light weighting efforts and parametric feature designs that enable remanufacturability (e.g., remove material where feasible for light-weighting and, at the same time, add material where needed to sustain remanufacturability). To achieve this goal, the first objective of this project is to establish a best practice approach to modify a typical design process for DfReman. The second objective is the creation of a software plugin for mainstream CAD software to enable design for remanufacturing consideration of high-value components. This tool will use realistic life estimates to automatically generate design alternatives for sustained remanufacturability, thereby reducing energy, emissions, material consumption and cost. This tool development will focus on engine cylinder heads and industrial pump components and will facilitate the generation of designs that will make components more readily available for remanufacturing processes, such as, re-machining of critical wear features for return to service, complete with estimates of cost/benefit of analysis for multiple lifecycles. The third and final objective disseminate the results of this project by developing training videos on the application of DfReman rules and the software plugin and creating a website to disseminate the plugin and training materials.

Project Team:
Iowa State University, Danfoss

19-01-DE-09

Data-Driven Design Decision Support for Re-X of High-Value Components in Industrial and Agricultural Equipment

Data-Driven Design Decision Support for Re-X of High-Value Components in Industrial and Agricultural Equipment

This project will create a tool to evaluate and recommend the optimal designs of components in industrial and agricultural equipment. By designing components with optimum material utilization and end-of-life in mind, there is a 60% reduction in carbon emissions.

The novelty of this tool lies in its ability to incorporate real-world load/component health data that has been acquired by condition monitoring systems in the field into early-stage design assessment using random variable models. This approach enables data-informed design for Re-X.

Project Team:
Iowa State University, John Deere

18-02-DE-06