^

Metals

Hybrid Laser Processing for Metallic Surface Remanufacturing

Hybrid Laser Processing for Metallic Surface Remanufacturing

The goal of this project is to develop a novel remanufacturing strategy using hybrid laser surface processing for effective removal of corrosion and coatings and fast repair of metallic surfaces. In specific, laser surface ablation will be used to remove coating/corrosion, while laser surface remelting will be applied to repair surface defects (cracks and wear damages) to restore the surface integrity. The outcomes of this research will yield a prototype robot-integrated hybrid laser system that can be used for surface remanufacturing of components with complex geometry. This project's energy savings are estimated at 16.5MJ/kg of reman product. 

Project Team:
Iowa State University (ISU), University of Nevada, Reno, Volvo

21-01-RM-5086

Recycling Technologies for Silicon Solar Modules

Recycling Technologies for Silicon Solar Modules

The objective of this project is to develop a ready-to-commercialize recycling process to recover materials from silicon modules: solar-grade silicon, lead, silver, tin, solar-quality glass cullet, aluminum, and copper. The focus is on a new chemical recycling process to recover solar-grade silicon, lead, silver, tin, and copper from silicon cells.

Upon completion, this project will deliver an optimized chemical recycling process for silicon solar cells extracted from modules. The optimized process will be the basis for designing and constructing a pilot plant for silicon module recycling at 100,000 modules/year in the U.S. which recovers solar-grade silicon, lead, silver, solar-quality glass cullet, aluminum, copper, and tin from silicon modules. This project will increase secondary materials recovery by about 0.2MMT, embodied energy savings of 22PJ, and GHG emissions reduction of 1.106MMT. Assumptions based on recycling 20% of the expected EOL solar panels in the U.S. in 2030.

Project Team:
Arizona State University (ASU), First Solar Inc., TG Companies LLC

21-01-RR-5014

Recycling and Refining of Aluminum Foils and other Difficult Scraps

Recycling and Refining of Aluminum Foils and other Difficult Scraps

The goal of this project is to produce a cost-competitive secondary feedstock for the aluminum industry using under-utilized foil materials as a source of material. Upon completion, this project will deliver a new processing technology that can continuously process thin gauge materials with a high level of organic contamination with high recovery yields, and design and demonstration of a novel prototype multi-chamber kiln for processing aluminum foils for recycling. This project will reduce primary feedstock by 0.326 million metric tons (MMT) of scrap aluminum, 55.6 PJ energy reduction, 2.71 MMTCO2e. Assumptions based on recovery of 360,000 short tons of scrap aluminum foil. 

Project Team:
Oculatus Consulting, Phinix LLC, Eck Industries, GPRL R&E LLLC

21-01-RR-5059

Enhanced Processing of Aluminum Scrap at End-of-life via Artificial Intelligence & Smart Sensing

Enhanced Processing of Aluminum Scrap at End-of-life via Artificial Intelligence & Smart Sensing

This project aims to deliver value-based intelligent melt control (VALI-MELT), a process control software tool with advanced sensing and processing capabilities, which enables closed loop quality control and optimal blending of scrap material.  VALI-MELT incorporates a scrap quality assessment tool (SQA), control software and in melt LIBS analyzer to enable close loop control for the utilization of post-consumer scrap.

Upon completion, this project will deliver a commercially viable software and sensing control tool that will enable optimal blending of scrap and real time processing adjustments based on feedstock composition and quality. This project will reduce primary feedstock by 0.462 million metric tons (MMT) of aluminum, 85 PJ energy reduction, 4.57 MMCO2e. Assumptions are based on demand projection for aluminum in 2030.

Project Team:
Solvus Global, Energy Research Company (ERCo), Eck Industries, Mercury Marine, Novelis, Schnitzer Steel Industries

21-01-RR-5102

A Technical Evaluation Framework for Recycling Technologies

A Technical Evaluation Framework for Recycling Technologies

his project seeks to develop a framework for determining a temporal hierarchy of technical recycling constraints and corresponding recycling parameters (recycling rates, recycled contents, and environmental benefits), develop a consistent quantitative methodology for defining the performance of recycling technologies, and collect sufficient material flow, composition, and recycling technology data to demonstrate the framework by evaluating the merits of emerging metal and polymer recycling technologies for select scrap streams.

Upon completion, this project aims to validate the Python‐based Recycling Constraint Evaluation Framework (RCEF) model containing the metal and polymer case study results that can be easily adapted to any material stream, an excel‐based Recycling Technology Performance (RTP) model (input to the RCEF model) containing a quantitative description of >11 emerging recycling technology processes and that can be easily adapted to add new technology definitions, and a published report on A New Framework for Evaluating Recycling Constraints and the Efficacy of Emerging Recycling technologies. Systems Analysis and Integration projects do not directly impact TPMs. 

Project Team:
University of Michigan, National Renewable Energy Laboratory (NREL), Institute of Scrap Recycling Industries (ISRI), The Plastics Industry Association, The Aluminum Association, Steel Manufacturers Association

21-01-SA-5034

Modeling reverse flows of selected recycled materials, their associated energy use and their GHG emissions

Modeling reverse flows of selected recycled materials, their associated energy use and their GHG emissions: An application to California and a blueprint for the US

The objective of this project is to create a unique systems analysis tool for REMADE, the recycling industry, and U.S. consumers of recycled materials (using the California State Freight Forecasting Model (CSFFM) in the California Statewide Freight Forecasting and Travel Demand Model (CSF2TDM) as a framework) that will enable REMADE, recycling agencies, and industry to analyze and project the generation, flow, recycling, reuse, and disposal of scrap metal, e-waste, selected plastics, and fibers from packaging, and their associated net energy consumption and net greenhouse gas (GHG) emissions, under different scenarios.  The tool will be developed using California as a case study; detailed step-by-step instructions to enable the extension of this tool to other states and the U.S. will be developed.​ 

Project Team:
University of California-Irvine (UCI), TruckPay.com

21-01-SA-5104

Data-Driven Design Decision Support for Remanufacturing of High-Value Components in Industrial and Agricultural Equipment

Data-Driven Design Decision Support for Remanufacturing of High-Value Components in Industrial and Agricultural Equipment

This project aims to develop and validate a new tool package (D4Reman) for design decision analysis to improve the reuse rates of high-value components at end-of-life. The project is a continuation of exploratory project 18-02-DE-06. Upon completion, this project will create a software tool package (D4Reman) for data-driven design decision support consisting of a cloud-based software application along with an Excel plugin. It will utilize field reliability data and reman reuse data to identify design improvement decisions and quantitatively assess their influences on the initial cost, life-cycle warranty cost (LCWC), and energy and emissions. This project will reduce primary feedstock by 0.55 million metric tons (MMT) of steel and aluminum, 7 PJ energy reduction, 0.42 MMCO2e. Assumptions based on preliminary results of exploratory project.

Project Team:
Iowa State University (ISU), University of Illinois at Urbana-Champaign (UIUC), Mississippi State University, John Deere, Automotive Parts Remanufacturers Association (APRA)

21-01-DE-5071

Development of Manufacturing Technologies to Increase Scrap Steel Recycling into New Tires

Development of Manufacturing Technologies to Increase Scrap Steel Recycling into New Tires

This project seeks to develop innovative processing technologies that can enable a greater rate of recycling of steel scrap into the manufacturing of new tires. The goal of this proposal is to increase the scrap recycling rate from 20% to 80%. During the cold drawing process, the fine wires are subjected to high levels of stresses that are known to generate wire breakage when impurity levels such as Cu or Sn are too high.

Upon completion, this project will develop thermal and chemical processing techniques to ameliorate the micro-structure to tolerate higher Cu contents. This project will reduce primary feedstock by 0.682 million metric tons (MMT) of steel, 10.7 PJ energy reduction, 1.19 MMCO2e. Assumptions based on U.S. tire production and increase in recycled steel use from 20 to 80%.

Project Team:
Arizona State University (ASU), Michelin North America, Inc.

21-01-MM-5005

Development of Computational Tools for Predicting Seam Weld Integrity in Thick-Walled Hollow Aluminum Extrusions

Development of Computational Tools for Predicting Seam Weld Integrity in Thick-Walled Hollow Aluminum Extrusions

The primary goal of this project is to reduce scrap and consumption of primary aluminum during the manufacturing of thick-walled hollow extrusions by developing simulation tools for predicting the quality of seam and charge welds. Upon completion, this project will provide computational methods and acceptance criteria for simulating the extrusion process and using the tools to design process and die modifications that lead to a reduction in scrap.

Project Team:
Secat, Inc., Lehigh University, University of Kentucky, Taber Extrusions, LLC.

21-01-MM-5006

High Speed Laser Cladding Repair Process Development

High Speed Laser Cladding Repair Process Development

This project seeks to expand upon the exploratory project, 18-02-RM-03 results to more fully vet the capabilities of HSLC and investigate additional additive repair applications that are challenging due to strength requirements, distortion requirements, and wear requirement. Limitations to the performance of the developed HSLC system will also be addressed, including design of a nozzle with HSLC in mind that incorporates additional cooling and improved powder focus. The technology solution that will be delivered at the end of the project is HSLC material system repair techniques, including a new powder nozzle design, and a general process guide to describe application of the repair methods. This project will reduce primary feedstock by 0.014 million metric tons (MMT) steel, 13.8 PJ energy reduction, 0.8 MMTCO2e. Assumptions based on preliminary results of 18-02-RM-03. 

Project Team:
Rochester Institute of Technology (RIT), Caterpillar Inc., Synergy Additive Manufacturing

21-01-RM-5027

Development of Hybrid Repair and Nondestructive Evaluation Technologies for Aerospace Components

Development of Hybrid Repair and Nondestructive Evaluation Technologies for Aerospace Components

The objective of this project is to develop an integrated hybrid DED/insitu multi-modal data acquisition and NDE modeling of DED repairs for aerospace materials (i.e. medium carbon low alloy steel and a nickel-based superalloy) to increase the successful repair and reuse of these materials. This proposed project is a continuation exploratory project 18-01-RM-09.  

The final product will be a complete software package that can automatically perform multi-modal (surface topography and thermal imaging) in-situ data acquisition (residual stresses) and nondestructive evaluation (NDE) analysis for industry users without expertise in 3D scanning, thermal imaging, and XRD. This project will create embodied energy savings of 1.56PJ and GHG emissions reduction of 0.0915MMT of CO2, based on an increase in successful repair of 0.021MMT of aerospace parts such as turbine shafts.

Project Team:
Rochester Institute of Technology (RIT), Iowa State University (ISU), The Ohio State University (OSU), Simufact, Hybrid Manufacturing Tech, Proto Mfg. Inc., Pratt & Whitney

21-01-RM-5062

Remanufacturing of Surface-Hardened Steel Components by Ultrasonic Surface Modification

Remanufacturing of Surface-Hardened Steel Components by Ultrasonic Surface Modification

This project seeks to develop practical repair techniques to recover nominal ‘as-new’ fatigue life in used or worn surface-hardened steel components by i) forging closed preexisting microcracks, ii) introducing beneficial compressive residual stresses (CRS) deeper than conventional shot peening, and iii) generating a nanocrystalline microstructure at the surface. Surface repairs based on UIT (a form of high-frequency needle peening) will be developed for a range of usage-induced damage conditions that are commonly found in these components, but for which there is a lack of practical repair methods.

Project Team:
Rochester Institute of Technology (RIT), Caterpillar, Inc., University of Pittsburgh (PITT)

20-01-RM-4012

Development of Instruments and Techniques That Can Assess Tire Life and Increase Re-Manufacturing of Commercial Vehicle Tires

Development of Instruments and Techniques That Can Assess Tire Life and Increase Re-Manufacturing of Commercial Vehicle Tires

This project seeks to increase the average number of times commercial vehicle tires are re-manufactured (retreaded) through the development of instruments and techniques that can assess the remaining useful life of tires in operation and optimize tire remanufacture.

Project Team:
Michelin North America, Northwestern University

20-01-RM-4006

Achieving 100% Recycling Aluminum in Die Casting Applications

Achieving 100% Recycling Aluminum in Die Casting Applications

The goal of this project is to achieve 100% use of recycled aluminum in die casting applications by realizing the following two objectives: 1) substitute 100% secondary materials for primary alloys in structural die castings with no degradation in properties; and 2) improve the mechanical properties of the current secondary alloys for non-structural applications.

Project Team:
The Ohio State University (OSU), Alcoa USA Corp., North American Die Casting Association (NADCA), CompuTherm LLC

20-01-MM-4033

Material and Vehicle Design for High-Value Recycling of Aluminum and Steel Automotive Sheet

Material and Vehicle Design for High-Value Recycling of Aluminum and Steel Automotive Sheet

This project seeks to increase automotive sheet metal EOL (post‐consumer) recycled content; thus, reducing vehicle embodied energy and primary feedstock consumption. The objectives are to produce a new analytical design for recycling tool tailored for automotive metal sheets, and to generate new knowledge on how EOL sheet recycling is affected by vehicle design (e.g., alloy specification), recycling system infrastructure (e.g., deployment of emerging separation processes), and sheet manufacturing process decisions (e.g., temperature profiles informed by new Integrated Computational Materials Engineering (ICME) tools).

Project Team:
University of Michigan, Ford Motor Company, Novelis, Argonne National Laboratory (ANL), The Institute of Scrap Recycling Industries (ISRI), The Aluminum Association, Light Metal Consultants

20-01-DE-4030

Selective Recovery of Elements from Molten Aluminum Alloys

Selective Recovery of Elements from Molten Aluminum Alloys

This project seeks to develop, validate, and commercialize several processes to selectively remove iron, copper, silicon, manganese, and zinc from molten-scrap–based secondary aluminum melts to improve the recyclability of scrap aluminum.

Project Team:
Phinix, LLC, Worcester Polytechnic Institute (WPI), Kingston Process Metallurgy, Smelter Service Corporation, Certified Flux Solutions, LLC

20-01-RR-4010

Building Re-X (BREX): Data, Methodology, and Design Integration

Building Re-X (BREX): Data, Methodology, and Design Integration

This project seeks to bring the concept of Design for Building Re-X (BREX) to the building construction materials. The project will develop a set of open access EOL databases for construction materials and create open-access BREX process models to enable EOL constraints to be incorporated into building design and materials selection.

Project Team:
National Renewable Energy Laboratory (NREL), Building Transparency, Skidmore Owings & Merrill

20-01-DE-4108

Increasing Melt Efficiency and Secondary Alloy Usage in Aluminum Die Casting

Increasing melt efficiency and secondary alloy usage in aluminum die casting

The aluminum casting industry uses limited quantities of secondary alloys because of their poor quality (i.e. high concentrations of residual contaminants such as iron). In this project thermodynamic and kinetic models coupled with experimental validation and testing will be used to develop holistic contaminant control techniques including alloy, flux and refractory chemistries to increase melt efficiencies with higher levels of secondary materials use.

Project Team:
The Ohio State University (OSU), Alcoa USA Corp., North American Die Casting Association (NADCA)

18-01-MM-08

Chemical Recycling of Mixed Plastics and Valuable Metals in the Electronic Waste Using Solvent-Based Processing

Chemical Recycling of Mixed Plastics and Valuable Metals in the Electronic Waste Using Solvent-Based Processing

This project seeks to demonstrate the potential of solvent-based extraction process to recover plastics mixed metals and plastics electronic waste (e‐waste) for cross-industry reuse. Following extraction of the plastics, the mixed-stream would be primarily metals. The plastics would be recovered from the process solvent using an anti-solvent. If successful, this project will significantly increase the recycling rates of e-waste, and the recovery of plastics and metals from this source material. The potential energy savings and emission reduction from this project are estimated at 16PJ per year and 334,000 MT of CO2eq. per year.

Project Team:
University of Massachusetts-Lowell, Sunnking, Inc., Institute of Scrap Recycling

18-02-RR-17

Development and Validation of Metal Separation Technology for Complex Metal Systems

Development and Validation of Metal Separation Technology for Complex Metal Systems

The goal of the proposed work is to develop, design, and demonstrate novel bench scale processes for efficient, low-cost, and environmentally benign elemental separation from low concentration solutions obtained from leaching of electronic waste (e-waste) processing streams. These are key processes for the recovery of valuable materials from e-waste and will provide a pathway to profitable recycling processes for high-value metals. Separation of multiple elements from complex metal-bearing waste streams (with low concentration) through traditional metal separation processes, such as solvent extraction (SX), ion exchange (IX), and precipitation, is economically and environmentally challenging. The objective of this proposal is to evaluate two innovative processes/technology, viz., electrosterically stabilized nanocrystalline cellulose (ENCC), and Continuous Ion Exchange and Ion Chromatography (CIX-CIC) with modified zeolite and polymers, for the separation of Al, Cu, Au, Ag, and Pd from e-waste streams (i.e., printed wiring boards).

Project Team:
The Pennsylvania State University, CHZ Technologies LLC

19-01-RR-12