^

Pennsylvania State University

Chemical Recycling of Mixed PET/Polyolefin Streams Through Sequential Pyrolysis and Catalytic Upgrading

Chemical Recycling of Mixed PET/Polyolefin Streams Through Sequential Pyrolysis and Catalytic Upgrading

This project seeks to convert mixed plastics waste to re-usable products through the development of catalysts to convert polymer pyrolysis products to BTX and olefins. The feedstock for the proposed two-stage process (pyrolysis followed by catalytic upgrading of the pyrolysis products to BTX and olefins) is a mix of PET and PP waste plastics.

Project Team:
The Pennsylvania State University (PSU), Northwestern University, Shaw Group Industries, Inc., Process Systems Enterprise, Inc. - A Siemens Business

20-01-RR-4034

Development and Validation of Metal Separation Technology for Complex Metal Systems

Development and Validation of Metal Separation Technology for Complex Metal Systems

The goal of the proposed work is to develop, design, and demonstrate novel bench scale processes for efficient, low-cost, and environmentally benign elemental separation from low concentration solutions obtained from leaching of electronic waste (e-waste) processing streams. These are key processes for the recovery of valuable materials from e-waste and will provide a pathway to profitable recycling processes for high-value metals. Separation of multiple elements from complex metal-bearing waste streams (with low concentration) through traditional metal separation processes, such as solvent extraction (SX), ion exchange (IX), and precipitation, is economically and environmentally challenging. The objective of this proposal is to evaluate two innovative processes/technology, viz., electrosterically stabilized nanocrystalline cellulose (ENCC), and Continuous Ion Exchange and Ion Chromatography (CIX-CIC) with modified zeolite and polymers, for the separation of Al, Cu, Au, Ag, and Pd from e-waste streams (i.e., printed wiring boards).

Project Team:
The Pennsylvania State University, CHZ Technologies LLC

19-01-RR-12

Quantitative Non-Destructive Evaluation of Fatigue Damage Based on Multi-Sensor Fusion

Quantitative Non-Destructive Evaluation of Fatigue Damage Based on Multi-Sensor Fusion

Current single-sensor non-destructive fatigue damage evaluation techniques have limited accuracy in predicting actual fatigue damage and the remaining useful life of a recovered part. The integration of multiple sensors which respond differently to fatigue damage has the potential of increasing the predictive accuracy of remaining useful life of materials to enable higher remanufacturing rates of parts.

Project Team:
University of Illinois at Urbana-Champaign, Pennsylvania State University

18-01-RM-12