^

Resource Recycling Systems

Education and Workforce Development on Chemical Recycling of Plastics

Education and Workforce Development on Chemical Recycling of Plastics

This project seeks to develop practitioner & expert level training in chemical recycling of plastics to educate, train, & develop the incumbent workforce for careers in Re-X, content will be prepared for both in-person and online delivery. The learning objectives include; to understand the state-of-the-art of various chemical recycling technologies, understand the product output for each type of chemical recycling process, understand the post-processing requirements needed to recover and separate products from a product state and to purify, modify and/or upgrade products to meet market requirements, understand the primary mechanisms for integrating the chemical recycling technologies into the supply chain for the products and co-products generated by the process, and understand the critical factors that affect the technical performance and costs of alternative chemical recycling process technologies.

The target audience for practitioner level training is intended for incumbent workers that currently work with Re-X technologies or in adjacent technology domains who wish to broaden their knowledge. Expert level training is intended to provide in-depth coverage of advanced Re-X concepts or technology and is targeted toward engineers or scientists trying to deepen their expertise.

Project Team:
University at Buffalo (UB), Resource Recycling Systems (RRS)

21-01-EWD-5074

Dynamic Systems Analysis of PET and Olefin Polymers in a Circular Economy

Dynamic Systems Analysis of PET and Olefin Polymers in a Circular Economy

This project seeks to continue the development of a Systems Analysis model including materials flow analysis, techno-economic assessment, and life-cycle assessment for PET and Olefins materials flow in the U.S. economy.

Project Team:
Michigan Technological University (MTU), Idaho National Laboratory (INL), Resource Recycling Systems (RRS), Yale University, Chemstations

20-01-SA-4014

Determining Material, Environmental and Economic Efficiency of Sorting and Recycling Mixed Flexible Packaging and Plastic Wrap

Determining Material, Environmental and Economic Efficiency of Sorting and Recycling Mixed Flexible Packaging and Plastic Wrap

This project will further develop technology to recover flexible plastic film from a material recovery facility (MRF). Market opportunities for the recovered film will be examined and the resulting economic and environmental impacts will be evaluated. The technology to be developed in the project, if implemented broadly, has the potential of capturing almost 11 billion pounds of flexible plastic packaging and plastic wrap that is currently landfilled each year.

Project Team:
American Chemistry Council , Resource Recycling Systems, Idaho National Laboratory

18-01-RR-17